
(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 2, No.2, February 2011 

 

38 | P a g e  

http://ijacsa.thesai.org/ 

Analysis of Software Reliability Data using 

Exponential Power Model 

 

Ashwini Kumar Srivastava
 
 

Department of Computer Application,  

S.K.P.G. College, Basti, U.P., India 

ashwini.skpg@gmail.com 

Vijay Kumar
 
 

Departments of Mathematics & Statistics, 

D.D.U. Gorakhpur University, Gorakhpur, U.P., India 

vkgkp@rediffmail.com

 

 
Abstract—In this paper, Exponential Power (EP) model is 

proposed to analyze the software reliability data and the present 

work is an attempt to represent that the model is as software 

reliability model. The approximate MLE using Artificial Neural 

Network (ANN) method and the Markov chain Monte Carlo 

(MCMC) methods are used to estimate the parameters of the EP 

model. A procedure is developed to estimate the parameters of 

the EP model using MCMC simulation method in OpenBUGS by 

incorporating a module into OpenBUGS. The R functions are 

developed to study the various statistical properties of the 

proposed model and the output analysis of MCMC samples 

generated from OpenBUGS. A real software reliability data set is 

considered for illustration of the proposed methodology under 

informative set of priors. 
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I.  INTRODUCTION  

Exponential models play a central role in analyses of 
lifetime or survival data, in part because of their convenient 
statistical theory, their important 'lack of memory' property and 
their constant hazard rates. In circumstances where the one-
parameter family of exponential distributions is not sufficiently 
broad, a number of wider families such as the gamma, Weibull 
and lognormal models are in common use. Adding parameters 
to a well-established family of models is a time honoured 
device for obtaining more flexible new families of models. The 
Exponential Power model is introduced by [14] as a lifetime 
model. This model has been discussed by many authors [4], [9] 
and [12]. 

A model is said to be an Exponential Power model with 

shape parameter >0 and scale parameter >0, if the survival 
function of the model is given by 

   x
R x ( , ) > 0 and  x (0, ) exp 1 e ,




   
 

  
 

. 

A.  Model Analysis 

For α > 0 and, λ > 0 the two-parameter Exponential Power 
model has the distribution function 

 
 x

F(x; , ) 1 exp 1 e ; ( , ) 0, x 0


 
         

 
          (1) 

The probability density function (pdf) associated with eq 
(1) is given by 

   x x1f (x; , ) x e e xp 1 e ; ( , ) 0, x 0
 

    
         

 
    (2) 

We shall write EP(α, λ) to denote Exponential Power model 
with parameters α  λ.  α 
as „shape parameter‟ by [4] and [14]. The R functions 
dexp.power( ) and pexp.power( ) given in SoftreliaR 

package can be used for the computation of pdf and cdf, 
respectively. 

Some of the typical EP density functions for different 

values of  and for λ = 1 are depicted in Figure1. It is clear 
from the Figure 1 that the density function of the Exponential 
Power model can take different shapes. 

 

Figure 1  Plots of the probability density function of the Exponential 

Power model for =1 and different values of   

1) Mode 
The mode can be obtained by solving the non-linear 

equation 

        x
1 x 1 e 0


  

      
 

.         (3) 

 

2) The quantile function 
For a continuous distribution F(x), the p percentile (also 

referred to as fractile or quantile), xp , for a given p,  0 < p <1, 
is a number such that  

p pP(X x ) F(x ) p   .                            (4) 
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 The quantile for p=0.25 and p=0.75 are called first 
and third quartiles and the p=0.50 quantile is called the 
median(Q2). The five parameters 

Minimum(x),  Q1,  Q2,  Q3,  Maximum(x) 

are often referred to as the five-number summary or 
explanatory data analysis. Together, these parameters give a 
great deal of information about the model in terms of the 
centre, spread, and skewness. Graphically, the five numbers are 
often displayed as a boxplot. The quantile function of 
Exponential Power model can be obtained by solving 

 x
1 exp 1 e p


 

   
 

 

or,    
1

p
1

x log 1 log 1 p ; 0 p 1    


.    (5) 

 The computation of quantiles the R function qexp.power( 

), given in  SoftreliaR package, can be used.  In 

particular, for p=0.5 we get 

   
1

0.5
1

Median(x ) log 1 log 0.5


 


.    (6) 

3) The random deviate generation 

Let U be the uniform (0,1) random variable and F(.) a cdf 

for which F
-1

(.) exists. Then F
-1

(u) is a draw from distribution 

F(.) . Therefore, the random deviate can be generated from 

EP() by   

  
11

x log 1 log 1 u ; 0 u 1


    


                 (7) 

where u has the U(0, 1) distribution. The R function 

rexp.power( ), given in  SoftreliaR package, generates the 

random deviate from EP(α, λ). 

4) Reliability function/survival function 

 The reliability/survival function 

     S x; , ( , ) > 0 and  exp 1 exp x , x 0


          (8)  

 The R function sexp.power( ) given in SoftreliaR 

package computes the reliability/ survival function. 

5) The Hazard Function  

The hazard function of Exponential Power model is given 
by 

   1
h x; , ( , ) >0 and   x exp x , x 0

 
          (9) 

and the allied R function  hexp.power( ) given in 

SoftreliaR package. Since the shape of h(x) depends on 

the value of the shape parameter . When  ≥ 1,  the failure 

rate function is increasing. When  < 1, the failure rate 

function is of bathtub shape. Thus the shape parameter  plays 

an important role for the model.   

Since differentiating equation (9) w.r.to x, we have 

        1
h x 1 x    

x


      .                     (10) 

 Setting  h (x)  = 0 and after simplification, we obtain the 

change point as 

 

1
1

0
1

x





 
  

 
.                                    (11) 

 It easily follows that the sign of  h x  is determined by

   1 .x


    which is negative for all x ≤ x0 and positive 

for all x ≥ x0.  

 

Figure 2 Plots of the hazard function of the Exponential Power 

model for =1 and different values of   

 
Some of the typical Exponential Power Model hazard 

functions for different values of  and for = 1 are depicted in 
Figure 2. It is clear from the Figure 2 that the hazard function 
of the Exponential Power model can take different shapes. 

6) The cumulative hazard function 

The cumulative hazard function H(x) defined as 

 H(x) 1 log F(x)                    (12) 

can be obtained with the help of pexp.power( ) function 
given in SoftreliaR package  by choosing  arguments 

lower.tail=FALSE and log.p=TRUE. i.e. 

  - pexp.power(x,  alpha,  lambda,  lower.tail = FALSE, 

log.p = TRUE) 

7) Failure rate average (fra) and Conditional survival 

function(crf) 

Two other relevant functions useful in reliability analysis 
are failure rate average (fra) and conditional survival function 
(crf)  The failure rate average  of X is given by 

   
H(x)

FRA(x) =
x

               , x > 0,  (13) 

where H(x) is the cumulative hazard function. 
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The survival function (s.f.) and the conditional survival of 
X are defined by 

        R(x)= 1 − F(x)       

and     
R (x + t)

R (x | t) = 
R(x)

  , t > 0, x > 0, R (·) > 0,     (14) 

respectively, where F(·) is the cdf of X. Similarly to h(x) and 
FRA(x), the distribution of X belongs to the new better than 
used (NBU), exponential, or new worse than used (NWU) 
classes, when R (x | t) <  R(x),  R(t | x) =  R(x), or R(x | t) > 
R(x), respectively. 

The R functions hra.exp.power( ) and crf.exp.power( ) 
given in SoftreliaR package can be used for the failure rate 

average (fra) and conditional survival function(crf), 
respectively. 

II. MAXIMUM LIKELIHOOD ESTIMATION AND 

INFORMATION MATRIX 

Let  x=(x1, . . . , xn) be a sample from a distribution with 
cumulative distribution function (1). The log likelihood 

function of the parameter L(, λ) is given by  

  

n

i
i 1

n n

i i
i 1 i 1

log L( , ) n log n log ( 1) log x

x n exp x



 

    

   
 

     

 

   (15) 

Therefore, to obtain the MLE‟s of  and λ we can 

maximize eq.(15) directly with respect to  and λ or we can 
solve the following two non-linear equations using iterative 
procedure [2] and [4]:  

    

n

i
i 1

n

i i i
i 1

log L n
n log log x

             x log( x ) 1 exp x 0






   



 
 


 

  

      (16) 

  
n

1
i i

i 1

log L n
x 1 exp x 0




   



 
  

 
    (17) 

Let us denote  ˆ ˆˆ ,    as the  MLEs of  ,    . It is 

not possible to obtain the exact variances of  ˆ ˆˆ ,    . The 

asymptotic variances of  ˆ ˆˆ ,     can be obtained from the 

following asymptotic property of  ˆ ˆˆ ,     

     1
2

ˆ N 0, I( )


                         (18)  

where I() is the Fisher‟s information matrix given by 

 

2 2

2

2 2

2

ln L ln L
E E

I( )

ln L ln L
E E

     
    

        
    

     
              

       (19) 

In practice, it is useless that the MLE has asymptotic 

variance  
1

I( )


 because we do not know .  Hence, we 

approximate the asymptotic variance by “plugging in” the 
estimated value of the parameters.  The common procedure is 

to use observed Fisher information matrix ˆO( )  (as an 

estimate of the information matrix I()) given by 

2 2

2

ˆ
2 2

2
ˆˆ( , )

ln L ln L

ˆO( ) H( )
ln L ln L



 

  
 

 
      

  
   

      (20) 

where H is the Hessian matrix,  =() and ˆ ˆˆ= ( , )   .  The 

observed Fisher information is evaluated at MLE rather than 
determining the expectation of the Hessian at the observed 
data. This is simply the negative of the Hessian of the log-
likelihood at MLE. If the Newton-Raphson algorithm is used to 
maximize the likelihood then the observed information matrix 
can easily be calculated. Therefore, the variance-covariance 
matrix is given by 

 
1

ˆ

ˆˆ ˆVar( ) cov( , )
H( )

ˆ ˆˆcov( , ) Var( )





   
    

    

.     (21) 

Hence, from the asymptotic normality of MLEs, 

approximate 100(1-)% confidence intervals for  and can be 
constructed as 

 / 2ˆ ˆz Var( )       and  / 2
ˆ ˆz Var( )        (22) 

 where z/2 is the upper percentile of standard normal variate.  

III. BAYESIAN ESTIMATION IN OPENBUGS 

The most widely used piece of software for applied 
Bayesian inference is the OpenBUGS. It is a fully extensible 
modular framework for constructing and analyzing Bayesian 
full probability models. This open source software requires 
incorporation of a module (code) to estimate parameters of 
Exponential Power model. 

A module dexp.power_T(alpha, lambda) is written in 
component Pascal, enables to perform full Bayesian analysis of 
Exponential Power model into OpenBUGS using the method 
described in [15] and [16]. 

A. Implementation of Module - dexp.power_T(alpha, lambda)    

The developed module is implemented to obtain the Bayes 
estimates of the Exponential Power model using MCMC 
method. The main function of the module is to generate 
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MCMC sample from posterior distribution under informative 
set of priors, i.e. Gamma priors. 

1) Data Analysis 

We are using software reliability data set SYS2.DAT - 86 
time-between-failures [10] is considered for illustration of the 
proposed methodology. In this real data set, Time-between-
failures is converted to time to failures and scaled. 

B. Computation of MLE and Approximate ML estimates using 

ANN 

The Exponential Power model is used to fit this data set. 
We have started the iterative procedure by maximizing the log-
likelihood function given in eq.(15) directly with an initial 

guess for  = 0.5 and λ = 0.06, far away from the solution. We 
have used optim( ) function in R with option Newton-Raphson 
method. The iterative process stopped only after 7 iterations. 

We obtain ̂  0.905868898, ̂  0.001531423 and the 

corresponding log-likelihood value = -592.7172. The similar 
results are obtained using maxLik package available in R.  An 
estimate of variance-covariance matrix, using eq.(22), is given 
by 

ˆˆ ˆVar( ) cov( , )  7.265244e-03 -1.474579e-06
 

ˆ ˆ -1.474579e-06    1.266970e-08ˆcov( , ) Var( )

     
         

 

Thus using eq.(23), we can construct the approximate 95% 
confidence intervals for the parameters of EP model based on 
MLE‟s. Table I shows the MLE‟s with their standard errors and 

approximate 95% confidence intervals for  and λ. 

TABLE I  MAXIMUM LIKELIHOOD ESTIMATE, STANDARD ERROR 

AND 95% CONFIDENCE INTERVAL 

 
An approximate ML estimates based on Artificial Neural 

Networks are obtained by using the neuralnet package 

available in R. We have chosen one hidden- layer feedforward 
neural networks with sigmoid activation function [1]. The 
results are quite close to exact ML estimates.  

C. Model Validation 

To study the goodness of fit of the Exponential Power 
model, we compute the Kolmogorov-Smirnov statistic between 
the empirical distribution function and the fitted distribution 
function when the parameters are obtained by method of 
maximum likelihood. For this we can use R function 
ks.exp.power( ), given in SoftreliaR package. The result of 

K-S test is D = 0.0514 with the corresponding p-value = 
0.9683, Therefore, the high p-value clearly indicates that 
Exponential Power model can be used to analyze this data set, 
and we also plot the empirical distribution function and the 
fitted distribution function in Figure 3. From above result and 

Figure 3, it is clear that the estimated Exponential Power model 
provides excellent fit to the given data. 

 

Figure 3    The graph of empirical distribution and fitted distribution function. 

 
The other graphical method widely used for checking 

whether a fitted model is in agreement with the data is 
Quantile-Quantile (Q-Q) plots.  

 
Figure 4    Quantile-Quantile(Q-Q) plot using MLEs as estimate. 

 

The Q-Q plots show the estimated versus the observed 
quantiles. If the model fits the data well, the pattern of points 
on the Q-Q plot will exhibit a 45-degree straight line. Note that 
all the points of a Q-Q plot are inside the square 

 

  1 1
1:n n:n 1:n n:n

ˆ ˆF (p ) , F (p ) x , x   
 

 . 

The corresponding R function qq.exp.power( ) is given in 
SoftreliaR package. As can be seen from the straight line 

pattern in Figure 4, the Exponential Power model fits the data 
very well. 

IV. BAYESIAN ANALYSIS UNDER INFORMATIVE PRIORS, 

I.E., GAMMA PRIORS 

 OpenBUGS code to run MCMC: 

Model 

 { 

 for( i in 1 : N )  

       { 

   x[i] ~ dexp.power_T(alpha, lambda) 

  }  

 # Prior distributions of the Model parameters 

Parameter MLE 
Std. 

Error 

95% Confidence 

Interval 

alpha 0.905868 0.085236 (0.7388055, 1.0729322) 

lambda 0.001531 0.000112 (0.0013108, 0.0017520) 
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  # Gamma prior for alpha  

   alpha ~ dgamma(0.001, 0.001)  

  # Gamma prior for lambda 

   lambda ~ dgamma(0.001, 0.001) 

     } 

Data   

list(N=86, x=c(4.79, 7.45, 10.22, 15.76, 26.10, 28.59, 35.52, 41.49, 

42.66, 44.36, 45.53, 58.27, 62.96, 74.70, 81.63, 100.71, 102.06, 104.83, 

110.79, 118.36, 122.73, 145.03, 149.40, 152.80, 156.85, 162.20, 164.97, 

168.60, 173.82, 179.95, 182.72, 195.72, 203.93, 206.06, 222.26, 238.27, 

241.25, 249.99, 256.17, 282.57, 282.62, 284.11, 294.45, 318.86, 323.46, 

329.11, 340.30, 344.67, 353.94, 398.56, 405.70, 407.51, 422.36, 429.93, 

461.47, 482.62, 491.46, 511.83, 526.64, 532.23, 537.13, 543.06, 560.75, 

561.60, 589.96, 592.09, 610.75, 615.65, 630.52, 673.74, 687.92, 698.15, 

753.05, 768.25, 801.06, 828.22, 849.97, 885.02, 892.27, 911.90, 951.69, 

962.59, 965.04, 976.98, 986.92, 1025.94)) 

Initial values  

# chain 1 

list(alpha=0.2 , lambda=0.01) 

# chain 2 

list(alpha= 1.0, lambda=0.10) 

 
We run the model to generate two Markov Chains at the 

length of 40,000 with different starting points of the 
parameters. The convergence is monitored using trace and 
ergodic mean plots, we find that the Markov Chain converge 
together after approximately 2000 observations. Therefore, 
burnin of 5000 samples is more than enough to erase the effect 
of starting point(initial values). Finally, samples of size 7000 
are formed from the posterior by picking up equally spaced 
every fifth outcome, i.e. thin=5, starting from 5001.This is done 
to minimize the auto correlation among the generated deviates. 

Therefore, we have the posterior sample {1i ,1i}, i = 

1,…,7000 from chain 1 and 2i ,2i}, i = 1,…,7000 from chain 
2.  

The chain 1 is considered for convergence diagnostics 
plots. The visual summary is based on posterior sample 
obtained from chain 2 whereas the numerical summary is 
presented for both the chains. 

A. Convergence diagnostics 

Sequential realization of the parameters  and  can be 
observed in figure 5. The Markov chain is most likely to be 
sampling from the stationary distribution and is mixing well.  

1) History(Trace) plot 

 
Figure 5 Sequential realization of the parameters   

 
There is ample evidence of convergence of chain as the 

plots show no long upward or downward trends, but look like a 
horizontal band, then we has evidence that the chain has 
converged.  

2) Running Mean (Ergodic mean) Plot 

The convergence pattern based on Ergodic average as 
shown in figure 6 is obtained after generating a time series 
(Iteration number) plot of the running mean for each parameter 
in the chain. The running mean is computed as the mean of all 
sampled values up to and including that at a given iteration. 

 
Figure 6     The Ergodic mean plots for   

3) Autocorrelation  

The graph shows that the correlation is almost negligible. 
We may conclude that the samples are independent. 

 
Figure7     The autocorrelation plots for   

4) Brooks-Gelman-Rubin Plot 

Uses parallel chains with dispersed initial values to test 
whether they all converge to the same target distribution. 
Failure could indicate the presence of a multi-mode posterior 
distribution (different chains converge to different local modes) 
or the need to run a longer chain (burn-in is yet to be 
completed). 

   
Figure 8 The BGR plots for   

From the Figure 8, it is clear that convergence is achieved. 
Thus we can obtain the posterior summary statistics. 

B. Numerical Summary   

In Table II, we have considered various quantities of 
interest and their numerical values based on MCMC sample of 
posterior characteristics for Exponential Power model under 
Gamma priors.  
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TABLE II NUMERICAL SUMMARIES UNDER GAMMA PRIORS 

 

C. Visual summary 

1) Box plots 

The boxes represent inter-quartile ranges and the solid 
black line at the (approximate) centre of each box is the mean; 
the arms of each box extend to cover the central 95 per cent of 
the distribution - their ends correspond, therefore, to the 2.5% 
and 97.5% quantiles. (Note that this representation differs 
somewhat from the traditional.) 

 
Figure 9  The boxplots for alpha and lambda. 

 

2) Kernel density estimates  

Histograms can provide insights on symmetric, behaviour 
in the tails, presence of multi-modal behaviour, and data 
outliers; histograms can be compared to the fundamental 
shapes associated with standard analytic distributions.  

 
Figure 10     Kernel density estimate and histogram of α based on MCMC 

samples, vertical lines indicates the corresponding ML and 

Bayes estimates. 
 

 

Figure 10 and 11 provide the kernel density estimate of  

and λ respectively. It can be seen that  and λ both are 
symmetric. 

 
Figure 11   Histogram and kernel density estimate of λ based on MCMC 

samples 

 

D. Comparison with MLE 

For the comparison with MLE we have plotted two graphs. 

In Figure 12, the density functions ˆˆf(x; , )  using MLEs and 

Bayesian estimates, computed via MCMC samples under 
gamma priors, are plotted. 
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Figure 12    The density functions ˆˆf(x; , )   using MLEs and Bayesian 

estimates, computed via MCMC samples under gamma priors. 

 
The Figure 13, exhibits the estimated reliability 

function(dashed line) using Bayes estimate under gamma priors 
and the empirical reliability function(solid line).  

 

 
Figure 13    The estimated reliability function(dashed line) and the empirical 

reliability function (solid line). 

 

It is clear from the Figures, the MLEs and the Bayes 
estimates with respect to the gamma priors are quite close and 
fit the data very well. 

V. CONCLUSION 

In this research paper, we have presented the Exponential 
Power model as software reliability model which was 
motivated by the fact that the existing models were inadequate 
to describe the failure process underlying some of the data sets.  

We have developed the tools for empirical modelling, e.g., 
model analysis, model validation and estimation. The exact as 
well as approximate ML estimates using ANN of the 

parameters alpha (α) and lambda () have been obtained.    

An attempt has been made to estimate the parameters in 
Bayesian setup using MCMC simulation method under gamma 
priors.  The proposed methodology is illustrated on a real data 
set. We have presented the numerical summary and visual 
summary under different priors which includes Box plots, 
Kernel density estimates based on MCMC samples. The Bayes 
estimates are compared with MLE. We have shown that the 
Exponential Power model is suitable for modeling the software 
reliability data and the tools developed for analysis can also be 
used for any other type of data sets.   
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